Учебная аналитика

Материал из Letopisi.Ru — «Время вернуться домой»
(Различия между версиями)
Перейти к: навигация, поиск
(Определения)
(Определения)
Строка 4: Строка 4:
 
; Учебная аналитика  
 
; Учебная аналитика  
 
: использование данных и моделей для прогнозирования успеваемости и достижений, а также способность действовать на основе этой информации» -  http://nextgenlearning.com/The-Challenges/Learning-Analytics
 
: использование данных и моделей для прогнозирования успеваемости и достижений, а также способность действовать на основе этой информации» -  http://nextgenlearning.com/The-Challenges/Learning-Analytics
 
+
; Шнейдер - аналитика учебного процесса - http://edutechwiki.unige.ch/en/Learning_process_analytics
 +
: Шнейдер и соавторы определяют аналитику учебного процесса как набор методов, которые позволяют обучающим и обучаемым лучше понимать события, происходящие в рамках учебного сценария - над чем работают участники, как они взаимодействуют, что они создают, какие средства они используют, в какой среде они протекает учебная деятельность. В центре внимания проектно-ориентированный и студентоцентрированный дизайн - проектное, исследовательское, проблемное обучение.
  
 
Учебная аналитика использует интеллектуальный анализ данных (Data Mining) - совокупность методов обнаружения в данных ранее неизвестных, нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности. Одно из важнейших назначений методов Data Mining состоит в наглядном представлении результатов вычислений (визуализация), что позволяет использовать инструментарий Data Mining людьми, не имеющими специальной математической подготовки.
 
Учебная аналитика использует интеллектуальный анализ данных (Data Mining) - совокупность методов обнаружения в данных ранее неизвестных, нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности. Одно из важнейших назначений методов Data Mining состоит в наглядном представлении результатов вычислений (визуализация), что позволяет использовать инструментарий Data Mining людьми, не имеющими специальной математической подготовки.

Версия 15:36, 6 апреля 2014

Термин аналитика широко используется в бизнесе и науке по отношения к компьютерному сбору данных, которые могут использоваться при принятии решений.

Содержание

Определения

Учебная аналитика
использование данных и моделей для прогнозирования успеваемости и достижений, а также способность действовать на основе этой информации» - http://nextgenlearning.com/The-Challenges/Learning-Analytics
Шнейдер - аналитика учебного процесса - http://edutechwiki.unige.ch/en/Learning_process_analytics
Шнейдер и соавторы определяют аналитику учебного процесса как набор методов, которые позволяют обучающим и обучаемым лучше понимать события, происходящие в рамках учебного сценария - над чем работают участники, как они взаимодействуют, что они создают, какие средства они используют, в какой среде они протекает учебная деятельность. В центре внимания проектно-ориентированный и студентоцентрированный дизайн - проектное, исследовательское, проблемное обучение.

Учебная аналитика использует интеллектуальный анализ данных (Data Mining) - совокупность методов обнаружения в данных ранее неизвестных, нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности. Одно из важнейших назначений методов Data Mining состоит в наглядном представлении результатов вычислений (визуализация), что позволяет использовать инструментарий Data Mining людьми, не имеющими специальной математической подготовки.

Метрики и индикаторы

Вики метрики

Различные стратегии, методы и средства, которые позволяют измерять и анализировать деятельность участников (обучающихся) в вики.

Измерение вклада

Измерение взаимодействия (коллаборация)

Разнообразие (diversity)
Количество участников, которые работают над одной статьей или общим проектом
Уровень взаимодействия
Количество соавторов / к возможному числу участников
Например, если из 10 участников 6 работают над этой статьей, то уровень коллаборации = 0.6
Интерактивность
Число редактирований
Интенсивность
Интерактивность / Разнообразие - т.е. число редактирований / число участников


Жизнеспособность (устойчивость) вики

Учебная аналитика на страницах Летописи

  1. Патаракин Е.Д, Катков Ю.В. «Использование викиграмм для поддержки совместной сетевой деятельности» –«Образовательные технологии и общество» (Educational Technology & Society) 2012, апрель 2012, с. 536 - 552 http://ifets.ieee.org/russian/depository/v15_i2/html/13.htm
  2. Патаракин Е.Д., Включение участников открытых сетей в исследовательскую деятельность. ГАУДЕНАМУС: Психолого-педагогический журнал 2/2010 Тамбов, с. 62 - 67.
  3. Патаракин Е.Д., Культура 2.0 - совместное творчество и совместное исследование. Образовательные технологии и общество (Educational Technology & Society) Издательство Казанский государственный технологический университет, 2010, № 2, с. 302 - 315
    http://ifets.ieee.org/russian/depository/v13_i2/html/9.htm

Литература

  • Парагогика: синергия самостоятельной и организованной учебной деятельности - Перевод И.Травкина
  • Y. Engestrom: From communities of practice to mycorrhizae, in H. Hughes, N. Jewson, L. Unwin (Eds.), Communities of practice: Critical perspectives. London: Routledge (2007). http://www.open.ac.uk/cetl-workspace/cetlcontent/documents/476902341f33c.pdf
  • Dimopoulos I., Petropoulou O., Retalis S. Assessing Students’ Performance Using the Learning Analytics Enriched Rubrics // Proceedings of the Third International Conference on Learning Analytics and Knowledge LAK ’13. New York, NY, USA: ACM, 2013. С. 195–199.
  • Dyckhoff A.L. и др. Supporting Action Research with Learning Analytics // Proceedings of the Third International Conference on Learning Analytics and Knowledge LAK ’13. New York, NY, USA: ACM, 2013. С. 220–229.
  • Ferguson R., Shum S.B. Social Learning Analytics: Five Approaches // Proceedings of the 2Nd International Conference on Learning Analytics and Knowledge LAK ’12. New York, NY, USA: ACM, 2012. С. 23–33.
  • Ice P. и др. Introduction to Analytics for E-Learning. , 2011. С. 684–686.
  • Knight S., Buckingham Shum S., Littleton K. Epistemology, Pedagogy, Assessment and Learning Analytics // Proceedings of the Third International Conference on Learning Analytics and Knowledge LAK ’13. New York, NY, USA: ACM, 2013. С. 75–84.
  • Lonn S., Aguilar S., Teasley S.D. Issues, Challenges, and Lessons Learned when Scaling Up a Learning Analytics Intervention // Proceedings of the Third International Conference on Learning Analytics and Knowledge LAK ’13. New York, NY, USA: ACM, 2013. С. 235–239.
  • Schneider D. и др. Requirements for learning scenario and learning process analytics. , 2012. С. 1632–1641.
  • Siemens G. Learning Analytics: Envisioning a Research Discipline and a Domain of Practice // Proceedings of the 2Nd International Conference on Learning Analytics and Knowledge LAK ’12. New York, NY, USA: ACM, 2012. С. 4–8.
  • Siemens G., Baker R.S.J. d. Learning Analytics and Educational Data Mining: Towards Communication and Collaboration // Proceedings of the 2Nd International Conference on Learning Analytics and Knowledge LAK ’12. New York, NY, USA: ACM, 2012. С. 252–254.
  • Tempelaar D.T. и др. Formative Assessment and Learning Analytics // Proceedings of the Third International Conference on Learning Analytics and Knowledge LAK ’13. New York, NY, USA: ACM, 2013. С. 205–209.
  • UNESCO IITE | E-library | Learning Analytics [Электронный ресурс]. URL: http://iite.unesco.org/publications/3214711 (дата обращения: 05.04.2014).
  • Long, P. and Siemens, G., Penetrating the fog: analytics in learning and education. Educause Review Online, 46, 5, (2011), 31-40. http://www.educause.edu/ero/article/penetrating-fog-analyticslearning-and-education

Персональные инструменты
Инструменты