Организация исследования при изучении метаболического аппарата клетки
Работа - участника конкурса Школьникам-исследователям
по теме Организация учебного исследования в области основ цитологии
Автор работы: Оксана Петрова
Раздел: «Метаболический аппарат клетки»
Основополагающий вопрос
Как малое видится в большом?
Проблемный вопрос: Где в клетке находятся электростанции?
Содержание |
Вопросы темы учебной программы
Пластиды. Митохондрии.
Форма работы: изучение нового материала
Темы исследования:
• Все клетки одинаковым способом обеспечивают выработку и запас энергии?
Гипотезы
• Клетки имеют различие в строении и способе питания, поэтому разные органоиды будут отвечать за обеспечение клетки энергией
• Органоиды, отвечающие за обеспечение клетки энергией, будут иметь общие черты строения, т.к. выполняют сходные функции
Цели исследования:
Выяснить способы получения энергии клетками
Методы: наблюдение и системный анализ
Материалы по проблеме
http://www.en.edu.ru - естественно-научный образовательный портал Министерства образования и науки РФ. Портал является составной частью федерального портала "Российское образование". Содержит ресурсы и ссылки на ресурсы по естественно-научным дисциплинам (физика, химия, биология и математика). Содержит проверенную научную информацию по самым разнообразным вопросам.
http://nature.ru - сайт РОО "Мир Науки и Культуры" можно найти новые данные по всем разделам биологии и других наук.
http://www.bio.msu.ru/l03c05/b01d02/Educat/membr.htm - страница кафедры биохимии биологического факультета МГУ. Цикл лекций профессора Болдырева А.А. по теме «Биохимия мембран». Обратить стоит особое внимание на лекцию «Окислительный стресс». Двойственная роль свободных радикалов и окислительный стресс.
http://www.bio.msu.ru/l03c05/b01d02/download/bm9.ppt - страница кафедры биохимии биологического факультета МГУ. Лекция профессора Болдырева А.А. по теме «Природные механизмы защиты нейронов от окислительного стресса» В ней затрагиваются вопросы о протекторных рецепторах. Природные антиоксидантные системы. Антиоксиданты как протекторы целостности клетки в условиях окислительного стресса. Отрицательные последствия антиоксидантной терапии.
http://www.bio.msu.ru/l03c05/b01d02/download/bm8.ppt - страница кафедры биохимии биологического факультета МГУ. Лекция профессора Болдырева А.А. по теме «Апоптоз и некроз - два типа смерти клеток». Механизмы и регуляция; причины и инициирующие сигналы клеточной смерти. Способы защиты. Патологии, вовлекающие апоптоз и некроз в свое развитие.
http://journal.issep.rssi.ru/contents.php?year=2004&number=2 - самые разнообразные статьи ведущих ученых на сайте Соросовского образовательного журнала
http://journal.issep.rssi.ru/?id=1 - тематический каталог «Биология» на сайте Соросовского образовательного журнала. Здесь можно найти информацию по всем интересующим проблемам, обозначенным в теме.
http://www.issep.rssi.ru/sej_str/RUB49.htm - статьи Соросовского образовательного журнала, посвященные теме свободных радикалов и фотобиологии.
http://www.pereplet.ru/obrazovanie/stsoros/53.html – статья В.П. Скулачева «Кислород в живой клетке: добро и зло». В статье рассмотрено соотношение полезной функции кислорода как окислителя питательных веществ, снабжающих живую клетку энергией, и повреждающей роли кислорода как окислителя ДНК и других жизненно важных компонентов клетки.
http://vivovoco.rsl.ru/VV/PAPERS/NATURE/SKUL.HTM#1 – статья «Стратегии эволюции и кислород», автор статьи Владимир Петрович Скулачев, академик РАН, директор Научно-исследовательского института физико-химической биологии МГУ. Рассматриваются вопросы преодоления ограничения, налагаемого естественным отбором при возникновении качественно новых сложных функций живых систем.
План хода исследования
I часть
1. На форуме вывешивается задание.
Вспомните:
• На какие группы делятся вещества по способу «добывания» субстратов для обеспечения клеток энергией?
• Как называются организмы, использующие в качестве источника энергии для синтеза своих соединений энергию Солнца?
• Как называются организмы, использующие готовые органические соединения?
• Как называются организмы, которые могут использовать оба вида «добычи» энергии?
• Как называются существа, которые получают энергию за счет энергии химических связей неорганических соединений?
2. Проведите системный анализ процесса обмена веществ в живом организме
Тип анализа | Направленность анализа внутрь | Направленность анализа наружу |
---|---|---|
Предметный | Анализ строения и внутренних связей системы.
Из чего состоит система? Как связаны между собой элементы системы? |
Анализ строения надсистемы и внешних связей исследуемой системы.
Какие еще системы входят в надсистему, кроме нашей? Как в надсистеме наша система связана с другими? |
Функциональный | Анализ внутреннего функционирования системы, «работы» ее связей.
Как работает каждый элемент системы? Какие внутренние функции выполняет каждая из подсистем, входящих в нашу систему? |
Анализ внешнего функционирования системы, ее входов и выходов.
Как наша система в целом работает в надсистеме? Какие внешние задачи решает система? |
Исторический | Генетический анализ системы.
Когда в каком виде возникла система? На каком этапе жизненного цикла находится система? |
Прогноз развития системы.
Как, в каком направлении будет развиваться система? Что будет модифицироваться в системе в первую очередь? |
Таблица заполняется каждым участником. Преподаватель предлагает обменяться составленными таблицами в сформированных им парах по внутренней почте. Дополнения и замечания учащийся вписывает красным цветом шрифта и отправляет автору. Таблицы корректируются и обмениваются в парах нового состава, затем вновь корректируются.
3. В чате предлагаются вопросы для обсуждения:
• Почему митохондрии и пластиды изучаются в сравнении?
• Какие клеточные структуры обеспечивают клетку энергией у автотрофных и гетеротрофных организмов?
4. Выдвижение гипотез.
5. Выполнение лабораторной работы
«Изучение пластид и митохондрий» (если нет готового микропрепарата «Митохондрии в клетках канальцев почек», то можно изучать по электронным пособиям или печатным изданиям)
Цель:
Познакомиться с особенностями строения митохондрий и пластид. Выявить общие черты в строении, выполняемых функциях, объяснить причины этого сходства.
Оборудование:
микроскопы, чашки Петри, пипетки, стаканчики с водой, предметные и покровные стекла, пинцеты, готовые микропрепараты «Митохондрии в клетках канальцев почек», ножницы, фильтровальная бумага, листья элодеи, препаровальные иглы, микрофотографии, электроннограммы эукариотических клеток.
Ход работы
I. Пластиды в клетках листа элодеи.
1. Возьмите лист элодеи и положите его в каплю воды на предметное стекло, накройте сверху покровным стеклом.
2. Рассмотрите препарат сначала на малом, затем на большом увеличении. При большом увеличении хорошо видны почти прямоугольные, вытянутые клетки. У них толстая двухконтурная оболочка.
3. В цитоплазме вы видите окрашенные в зеленый цвет овальные тельца – хлоропласты.
4. На малом увеличении постарайтесь найти клетки вблизи центральной жилки листа. Рассмотрите движение цитоплазмы и пластид вдоль стенок клетки. (Если движение не увидели, возьмите ваш временный препарат и погрейте его несколько минут над лампочкой и повторите наблюдение). Зачем нужны теплая вода и свет? Как влияет температура на процессы, происходящие в клетке?
5. Зарисуйте увиденное, сделайте обозначения, запишите вывод.
II. Изучение и зарисовка готовых микропрепаратов. Митохондрии в клетках канальцев почек.
1. Рассмотрите на готовом микропрепарате окрашенные в красный цвет мелкие зерна, расположенные по всей цитоплазме клеток.
2. Зарисуйте 2-3 клетки и сделайте обозначения.
В таблице отразите общие черты в строении, выполняемых функциях, объясните причины этого сходства.
Критерии для сравнения | Митохондрии | Пластиды |
---|---|---|
Форма | Округлая или овальная |
Овальная |
Поверхностный аппарат | Две типичные мембраны |
Две мембраны, наружной и внутренней |
Особенность внутренней мембраны | Образует кристы. На них расположены ферменты, обеспечивающие клеточное дыхание и синтез АТФ |
Внутренняя мембрана образует складки. На них расположены фотосинтезирующие пигменты и белки электронотранспортной цепи |
Главная функция | Окисление органических веществ с выделением энергии, которая используется для синтеза АТФ |
Преобразование энергии солнца в молекулы АТФ |
Автономность | Полуавтономные. Обладают собственной ДНК и рибосомами, поэтому они способны к авторепродукции и синтезу собственных белков. Обладание собственным геномом обеспечивает митохондриям уникальное свойство – способность к делению |
Полуавтономные. Способны к репликации ДНК и синтезу белков, но большая часть белков синтезируется в цитоплазме, кодируясь на ядерной ДНК |
6. Выводы:
Митохондрии и пластиды обеспечивают энергетический обмен в клетке, запасая энергию в виде молекул АТФ. Эти клеточные структуры выполняют сходные функции, что обеспечивается сходством в строении.
II. часть
В электронной конференции вывешиваются проектные задания.
Группы выбирают одно задание:
1. Применение общих законов термодинамики к живой природе
• Что такое энтропия?
• Проиллюстрируйте конкретными примерами, как живая клетка подчиняется законам термодинамики.
• Что такое «открытые» и «закрытые» энергетические системы? (в итоге учащиеся должны доказать, что повышение энтропии связано с серьезными нарушениями в балансе вещества и энергии в клетке, что уравнивание состояния внутренней и внешней среды – это смерть клетки)
2. Роль кислорода в клетке – польза и вред
• Как образуются радикалы в клетке, каковы их химические свойства?
• Как проявляется двоякая роль радикалов в клетке?
• В чем заключается польза кислорода? («кислородный взрыв» макрофагов при воспалении, синтез стероидных гормонов, выработка тепла)
• В чем заключается вред радикалов? (мутационный эффект суперрадикалов, активация онкогенов и сигнал к апоптозу)
3. Бактерии – самые большие оригиналы по использованию источников энергии
• Какие субстраты для получения энергии и питания используют бактерии? (от серы до органических веществ)
• Составьте схему о разных группах бактерий, продукты деятельности которых являются субстратом для получения энергии другими группами бактерий
• Проиллюстрируйте уникальную адаптивную пластичность бактерий, в результате которой стало возможным образование атмосферы и литосферы
Начиная работу, выберите один из вопросов проектного задания группы или сформулируйте проблемный вопрос к заданию. Индивидуально заполните таблицу, обменяйтесь мнениями в группе, определитесь с окончательным вариантом. Подумайте, как вы представите результаты своих исследований. На любом этапе вы можете получить консультацию у преподавателя или у других групп.
Какую проблему нужно решить? | Гипотезы |
Какой важной информацией для решения проблемы Вы обладаете? | Что еще нужно знать? |
Каковы 3 главных способа решения проблем?
1. _____________________________ ________________________________
|
Какой из выбранных способов лучше? Почему? |
Обсудите в группе результаты каждого, подготовьте общий отчет в виде презентации, сформулируйте выводы. Разместите презентации на электронной конференции.
После изучения нового материала дополните статью в Летописи «Законы термодинамики в приложении к биологическим объектам» конкретными примерами, доказывающие положения законов термодинамики в приложении к биологическим объектам.
Формы педагогических измерений и контроля
Результаты исследований учащиеся оформляют в виде коллективного гипертекста в статье Летописи «Законы термодинамики в приложении к биологическим объектам», категории Биология, Метаболизм.
Начало статьи размещает преподаватель:
«В живых системах действуют оба фундаментальных закона термодинамики. Первый закон – закон сохранения энергии – в приложении к биологическим объектам говорит, что энергия может переходить из одной формы в другую, но ее общее количество в системе остается неизменным. Второй закон термодинамики – закон энтропии – в приложении к биологическим системам означает, что они являются системами, которые стремятся, используя различные источники энергии, поддерживать свою структурно-функциональную целостность и организацию. Чем выше упорядоченность системы, тем ниже энтропия, чем сильнее деструктивные процессы в клетке или организме (на любом уровне – от организма до биохимических реакций) – тем энтропия (хаос, распад) выше. Организм и клетка все время вынуждены запасать энергию, которая тратится на работу и рассеивается в виде тепла, на поддержание своей целостности и стабильности». (использованы материалы Кириленкова В. Н., Обухов Д. К. Клетки и ткани: методическое пособие для учителя.[Текст] – М.: Дрофа, 2007. 158с.)
Презентации групп оцениваются по критериям.
Зачетная работа
1. Ответьте на вопросы:
• О каком органоиде идет речь? Свой ответ поясните. У этого органоида имеются признаки, характерные для прокариотических клеток, например, ядерный аппарат, рибосомы, способность к размножению (делению). Форма его характеризуется большим разнообразием: может быть вытянутой, сферической, нитевидной, даже разветвленной. Число их зависит от видовой принадлежности организма, типа клеток, функциональной активности клеток. Доказано, что число их в соматических клетках растет при регулярных физических нагрузках, а при низкой двигательной активности – гиподинамии – уменьшается. Вот здесь-то и играет важную роль способность их к делению. Перед делением происходит репликация ДНК с помощью ДНК-полимеразы. Уменьшение числа происходит в результате разрушения с помощью лизосом.
• Чем вы можете объяснить, что при регулярной и длительной физической нагрузке число крист - выростов внутренней мембраны – возрастает, а в условиях гиподинамии уменьшается? Свяжите выполняемые митохондриями функции и особенности их строения.
2. Выберите правильный ответ из нескольких предложенных.
№п/п | Вопрос | Варианты ответов |
---|---|---|
1. | У клеток, наиболее активно участвующих в обмене, поверхность: |
а) наиболее гладкая; б) ничем не отличается от поверхности других клеток; в) порой образует некоторые выпячивания; г) имеет очень большое количество микроворсинок. |
2. | Обменные процессы в клетке чётко выверены. Для того чтобы торможение каталитического пути вещества вследствие ингибирования одного из его ферментов неизбежно не влекло бы за собой также и замедления соответствующего биосинтетического пути |
а) в реакциях катаболизма и анаболизма используются одинаковые ферменты; б) реакции анаболизма идут в несколько раз быстрее; в) катаболический путь и анаболический путь между данным предшественником и данным продуктом обычно не совпадают; г) для расщепления и для биосинтеза используется один и тот же путь, т. е. анаболизм – это простое обращение последовательности реакций катаболизма данного вещества. |
3. | Энергия, запасённая в восстановленной форме никотинамидаденинди- нуклеотидфосфата (НАДФ) используется: |
а) для процессов движения и сокращения; б) в реакциях биосинтеза; в) для активного транспорта веществ через мембраны против градиента концентрации; г) в очень тонких механизмах, обеспечивающих передачу генетической информации при биосинтезе ДНК, РНК. |
4. | Общая скорость катаболизма, обеспечивающего клетку энергией, определяется: |
а) имеющимся в клетке запасом НАДФ; б) наличием или концентрацией клеточного топлива; в) скоростью протекания процессов анаболизма; г) потребностью клетки в энергии в форме АТФ и НАДФ. |
5. | Среди механизмов регуляции метаболических процессов присутствует гормональный. У человека надпочечники выделили в кровь большое количество адреналина. Это повлекло за собой: |
а) ускорение биосинтеза белка в скелетных мышцах; б) распад гликогена в печени, в скелетных мышцах; в) ускорение катаболизма жиров в печени; г) общее замедление реакций метаболизма. |
6. | Концентрация АТФ в мышечной ткани (в которой около 70% приходится на долю воды) равна приблизительно 8,0 мМ. В периоды усиленной мышечной активности АТФ расходуется для мышечного сокращения со скоростью 300 мкмоль/мин на 1г мышечной ткани. Что делает возможным спринтерский бег при таком запасе АТФ?: |
а) запаса АТФ хватает; б) используется не только энергия АТФ, но и энергия креатинфосфата, НАДФ, запас которых достаточен; в) при распаде АТФ часть энергии превращается в тепло, энергия которого также используется для сокращения мышц; г) идёт ускоренный синтез АТФ в процессе катаболизма глюкозы, аминокислот и жирных кислот в процессе бега. |
7. | При экстренной, очень напряжённой и поэтому непродолжительной работе мышечная ткань получает бо́льшую часть энергии за счёт: |
а) анаэробного гликолиза; б) распада гликогена до глюкозы; в) запаса АТФ; г) аэробного дыхания. |
8. | При беге на короткие дистанции в крови спринтера в весьма значительных количествах накапливается лактат, т. к.: |
а) из-за недостатка кислорода в тканях дальнейшего окисления пирувата не идёт; б) это вещество является гуморальным регулятором, поддерживающим сократительную работу белков; в) это продукт травматического распада миозина; г) это одно из немногих веществ, биосинтез которых идёт за счёт тепловой энергии, высвобождающейся при усиленной работе мышц. |
9. | При беге на короткие дистанции в крови спринтера в весьма значительных количествах накапливается лактат. Какова дальнейшая судьба большинства его молекул?: |
а) он выводится почками из организма; б) в печени лактат медленно превращается в глюкозу; в) молекулы лактата будут использованы в ходе кислородного окисления; г) лактат превращается в аминокислоты, идущие на восстановление сократительных белков. |
10. | В период восстановления после спринтерского бега человек продолжает ещё некоторое время (около 30 мин.) глубоко дышать, потребляя избыточное количество кислорода. Оно требуется для синтеза соответствующего количества АТФ, которого должно хватить на: |
а) пополнение запасов АТФ в мышцах; б) реакции биосинтеза повреждённых при беге белков; в) пополнение израсходованного на работу мышц запаса гликогена в печени и мышцах; г) усиленную работу почек по выводу ядовитых веществ из организма. |