Коэффициент кластеризации

Материал из Letopisi.Ru — «Время вернуться домой»
Версия от 15:05, 21 февраля 2016; Евгений Патаракин (обсуждение | вклад)

(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Кластеризация – это локальная характеристика сети. Она характеризует степень взаимодействия между собой ближайших соседей данного узла. В большинстве сетей, если узел А соединен с узлом В, а узел В – с узлом С, то существует большая вероятность, что узел А соединен с узлом С (друзья наших друзей обычно также являются и нашими друзьями).

Коэффициент кластеризации данного узла есть вероятность того, что два ближайших соседа этого узла сами есть ближайшие соседи.

Коэффициент С соответствует отношению реального числа связей между его соседями и их потенциально возможного числа. Для узла i Ci = Ei/[ki(ki-1)/2], где Ei реальное число связей, ki – степень узла, а в знаменателе записано суммарное число потенциально возможных связей между непосредственными соседями узла i (при котором сеть или еѐ часть превращается в полный граф).

Коэффициент кластеризации может быть усреднен для любой части сети или для сети в целом, становясь ее интегральной характеристикой: C = 1/n ΣCi.

Усредненный коэффициент кластеризации для групп участников школьной сети. Если мы можем по какому либо принципу выделить группу участников, то мы можем определить коэффициент кластеризации в пределах данной группы. Для членов устойчивой группы - клики - коэффициент кластеризации = 1.


Коэффициент кластеризации – это метрика, которая является более эффективной, чем плотность, и её всё чаще используют в общественных науках. Коэффициент кластеризации – степень, определяющая насколько узлы стремятся к кластеризации. Например, в сети друзей это вероятность того, что 2 моих друга являются друзьями между собой. То есть это некоторая оценка фрагментированности сети. При высокой кластеризации можно ожидать, что вирус будет распространяться лишь в определенной подгруппе (кластере). При низкой кластеризации высока вероятность быстрого распространения вируса по всей сети

Локальный коэффициент кластеризации

Коэффициент локального объединения в кластеры (коэффициент кластеризации) является мерой того, насколько хорошо связанны связаны между собой соседи данного узла. Локальный коэффициент кластеризации рассчитывается как число связей межу соседями данного узла / возможное число связей между соседями.

NetLogo позволяет рассчитывать

turtle nw:clustering-coefficient - local clustering coefficient of the turtle.

Reports the local clustering coefficient of the turtle. The clustering coefficient of a node measures how connected its neighbors are. It is defined as the number of links between the node's neighbors divided by the total number of possible links between its neighbors.

nw:clustering-coefficient takes the directedness of links into account. A directed link counts as a single link whereas an undirected link counts as two links (one going one-way, one going the other).


Мы всегда рассматриваем ситуацию как сравнение числа существующих связей к числу возможных связей. Есть узлы, все соседи которых связаны между собой. Есть узлы между соседями которых вообще нет никаких связей. И опять это ситуация, когда есть развитая сеть и все соседи связаны между собой - это сообщество, это клика, где все друг с другом связаны.

Чем выше локальный коэффициент кластеризации, тем выше вероятность того, что участник данный участник входит в состав устойчивой группы и обладает социальными компетенциями, необходимыми для использования объектов, созданные другими участниками, и создания объектов, нужных другим участникам.

Закономерности: - Закон Меткалфа


Если рассматривать ценность сети с педагогической точки зрения - как создание устойчивых связей между всеми акторами сети, то для отдельного участника число его связей с другими участниками / на возможное число связей.

Глобальный коэффициент кластеризации

Коэффициент кластеризации – это значения кластеризации для всех узлов графа. Когда коэффициент кластеризации высокий – это означает, что граф чрезвычайно плотно сгруппирован вокруг нескольких узлов; когда он низкий – это значит, что связи в графе относительно равномерно распространены среди всех узлов.

Вычисляется на основании того сколько треугольников сложено в сети от возможного количества треугольников. Например, на следующей картинке коэффициент кластеризации равен 1/3 - потому что там моглор бы быть 3 треугольника, а сложился только 1

figure4.png

Netlogo

The global clustering coefficient measures how much nodes tend to cluster together in the network in general. It is defined based on the types of triplets in the network. A triplet consists of a central node and two of its neighbors. If its neighbors are also connected, it's a closed triplet. If its neighbors are not connected, it's an open triplet. The global clustering coefficient is simply the number of closed triplets in a network divided by the total number of triplets. It can be calculated from the local clustering coefficient quite easily with the following code

to-report global-clustering-coefficient
 let closed-triplets sum [ nw:clustering-coefficient * count my-links * (count my-links - 1) ] of turtles
 let triplets sum [ count my-links * (count my-links - 1) ] of turtles
 report closed-triplets / triplets
end


R

transitivity(g, type="local") order(transitivity(g, type="local"))

Насколько узлам свойственно объединяться в кластеры

Усредненный коэффициент кластеризации - The average local clustering coefficient is another popular method for measuring the amount of clustering in the network as a whole. It may be calculated with

mean [ nw:clustering-coefficient ] of turtles

Персональные инструменты
Инструменты