Шеннон, Клод

Материал из Letopisi.Ru — «Время вернуться домой»
(Различия между версиями)
Перейти к: навигация, поиск
(Теоремы Клода Шеннона)
 
(не показаны 11 промежуточных версий 3 участников)
Строка 1: Строка 1:
 +
Клод Элвуд Шеннон
 +
Родился 30 апреля 1916 года городе Петоцки, штат Мичиган.
  
  
=Клод Элвуд Шеннон=
+
В 1932 г. Шеннон поступил в Мичиганский университет, который окончил в 1936 г., получив степень бакалавра по двум специальностям: математика и электротехника. Во время обучения он нашел в библиотеке университета две работы Джорджа Буля (George Boole) — «Математический анализ логики» и «Логическое исчисление», написанные в 1847 и 1848 годах соответственно. Шеннон тщательным образом их изучил, и это, по-видимому, определило его дальнейшие научные интересы.
родился 30 апреля 1916 года В Мичигане.
+
Источник:http://controlengrussia.com/retrospektiva/klod-shennon-sozdatel-teorii-informatsii-k-100-letiyu-so-dnya-rozhdeniya/
 +
 +
=Теория связи в секретных системах=
 +
Работа Шеннона “Теория связи в секретных системах” (1945) с грифом “секретно”, которую рассекретили и опубликовали только лишь в 1949 году, послужила началом обширных исследований в теории кодирования и передачи информации, и, по всеобщему мнению, придала криптографии статус науки. Именно Клод Шеннон впервые среди американцев начал изучать криптографию, применяя научные подходы, разработанные математиками еще в XIX веке. В этой статье Шеннон определил основополагающие понятия теории криптографии, без которых криптография уже немыслима. Важной заслугой Шеннона является исследования абсолютно стойких систем (которых на самом деле не существует в принципе) и доказательство их существования, а также существование криптостойких шифров, и требуемые для этого условия. Шеннон также сформулировал основные требования, предъявляемые к надежным шифрам. Он ввёл ставшие уже привычными понятия рассеивания и перемешивания, а также методы создания криптостойких систем шифрования на основе простых операций. Данная статья является отправным пунктом изучения науки криптографии в США.
  
Основателем теории информации, нашедшей применение в современных высокотехнологических системах связи.
+
=Статья “Математическая теория связи”=
американский инженер и математик, его работы являются синтезом физико-математических идей Людвига Больцмана об энтропии с конкретным анализом проблем передачи данных по каналам связи их технической реализации. Клод Шеннон является основателем теории передачи информации, нашедшей применение в современных высокотехнологических системах связи. Шеннон внес огромный вклад в теорию вероятностных схем, теорию автоматов и теорию систем управления - области наук, входящие в понятие "кибернетика". В 1948 году предложил использовать слово [https://ru.wikipedia.org/wiki/Бит "бит"] для обозначения наименьшей единицы информации [https://ru.wikipedia.org/wiki/Математическая_теория_связи_(статья) (в статье "Математическая теория связи")].
+
Статья “Математическая теория связи” была опубликована в 1948 году и сделала Клода Шеннона всемирно известным. В ней Шеннон изложил свои идеи, ставшие впоследствии основой современных американских теорий и техник обработки, передачи и хранения информации. Шеннон обобщил идеи Хартли и ввёл понятие информации, содержащейся в передаваемых сообщениях, эквивалентное тому, что было известно в термодинамике со времен Больцмана (1873) под названием "энтропия".
  
 +
В качестве меры информации передаваемого сообщения, Хартли предложил использовать логарифмическую функцию
  
==Теоремы Шеннона:==
+
I = log M
 +
Шеннон первым начал рассматривать передаваемые сообщения и шумы в каналах связи с точки зрения статистики Больцмана, рассматривая как конечные, так и непрерывные множества сообщений. Развитая Шенноном теория передачи информации помогла решить проблемы, связанные с передачей сообщений, а именно: устранить избыточность передаваемых сообщений, произвести кодирование и передачу сообщений по каналам связи с шумами.
  
-Прямая и обратная теоремы Шеннона для источника общего вида — о связи энтропии источника и средней длины сообщений.
+
Решение проблемы передачи сообщения по каналам связи с шумами при заданном соотношении мощности полезного сигнала к мощности сигнала помехи в месте приема, позволяет передавать по каналу связи сообщения с достаточно малой вероятностью ошибки при передаче сообщения. Также, это отношение определяет пропускную способность канала. Это обеспечивается применением кодов, устойчивых к помехам, при этом скорость передачи сообщений по данному каналу должна быть ниже его пропускной способности.
  
-Прямая и обратная теоремы Шеннона для источника без памяти — о связи энтропии источника и достижимой степени сжатия с помощью кодирования с потерями и последующего неоднозначного декодирования.
+
В своих работах Шеннон доказал принципиальную возможность решения обозначенных проблем, это явилось в конце 40-х годов настоящей сенсацией в американских научных кругах.
  
-Прямая и обратная теоремы Шеннона для канала с шумами о связи пропускной способности канала и существования кода, который возможно использовать для передачи с ошибкой, стремящейся к нулю (при увеличении длины блока).
+
Ученые из СССР и США (СССР Хинчин, Добрушин, Колмогоров; США — Галлагер, Вольфовиц, Файнштейн дали строгую математическую трактовку изложенной Шенноном теории.
  
-Теорема Найквиста — Шеннона (в русскоязычной литературе — теорема [[Котельников, Владимир Александрович|Котельникова]]) — об однозначном восстановлении сигнала по его дискретным отсчётам.
+
Источник:http://bourabai.ru/shannon/
  
-Теорема Шеннона об источнике шифрования (или теорема бесшумного шифрования) устанавливает предел максимального сжатия данных и числовое значение энтропии Шеннона.
+
=Теоремы Клода Шеннона=
 +
Прямая и обратная теоремы Шеннона для источника общего вида — о связи энтропии источника и средней длины сообщений.
  
-Теорема Шеннона — Хартли, позволяющая найти пропускную способность канала, означающую теоретическую верхнюю границу скорости передачи данных.
+
Прямая и обратная теоремы Шеннона для источника без памяти о связи энтропии источника и достижимой степени сжатия с помощью кодирования с потерями и последующего неоднозначного декодирования.
  
 +
Прямая и обратная теоремы Шеннона для канала с шумами — о связи пропускной способности канала и существования кода, который возможно использовать для передачи с ошибкой, стремящейся к нулю при увеличении длины блока.
  
 +
(В теории информации, по традиции, утверждения типа “для любого кода имеет место некоторое свойство” называются обратными теоремами, а утверждения типа “Существует код с заданным свойством” — прямыми теоремами).
  
 +
Шеннон повторно в 1949 году доказал теорему Котельникова 1933 года, которая на Западе называется теоремой Найквиста — Шеннона — об однозначном восстановлении сигнала по его дискретным отсчётам.
  
 +
Теорема Шеннона об источнике шифрования (или теорема бесшумного шифрования) устанавливает предел максимального сжатия данных и числовое значение энтропии Шеннона.
  
В 1956 году ученый прекращает работу в [https://ru.wikipedia.org/wiki/Лаборатории_Белла «Bell Laboratories»] и занимает должность профессора сразу на двух факультетах технологического института в Массачусетсе: электротехническом и математическом. Когда ему исполнилось 50 лет, он перестает заниматься преподавательской деятельностью и всего себя посвящает любимым хобби. Он создал одноколесный велосипед с 2-мя седлами, роботов, которые собирают кубик Рубик и жонглируют шарами, складной нож с большим количеством лезвий. В 1965 году он посетил [[СССР]].  А в последнее время Клод Шеннон сильно болел и умер в феврале 2001 году от недуга Альцгеймера в массачусетском доме престарелых.
+
Теорема Шеннона — Хартли
 +
 
 +
 
 +
----
 +
[[Категория:Информатика]]
 +
[[Категория:Кибернетик]]

Текущая версия на 16:09, 28 сентября 2018

Клод Элвуд Шеннон Родился 30 апреля 1916 года городе Петоцки, штат Мичиган.


В 1932 г. Шеннон поступил в Мичиганский университет, который окончил в 1936 г., получив степень бакалавра по двум специальностям: математика и электротехника. Во время обучения он нашел в библиотеке университета две работы Джорджа Буля (George Boole) — «Математический анализ логики» и «Логическое исчисление», написанные в 1847 и 1848 годах соответственно. Шеннон тщательным образом их изучил, и это, по-видимому, определило его дальнейшие научные интересы.

Источник:http://controlengrussia.com/retrospektiva/klod-shennon-sozdatel-teorii-informatsii-k-100-letiyu-so-dnya-rozhdeniya/

[править] Теория связи в секретных системах

Работа Шеннона “Теория связи в секретных системах” (1945) с грифом “секретно”, которую рассекретили и опубликовали только лишь в 1949 году, послужила началом обширных исследований в теории кодирования и передачи информации, и, по всеобщему мнению, придала криптографии статус науки. Именно Клод Шеннон впервые среди американцев начал изучать криптографию, применяя научные подходы, разработанные математиками еще в XIX веке. В этой статье Шеннон определил основополагающие понятия теории криптографии, без которых криптография уже немыслима. Важной заслугой Шеннона является исследования абсолютно стойких систем (которых на самом деле не существует в принципе) и доказательство их существования, а также существование криптостойких шифров, и требуемые для этого условия. Шеннон также сформулировал основные требования, предъявляемые к надежным шифрам. Он ввёл ставшие уже привычными понятия рассеивания и перемешивания, а также методы создания криптостойких систем шифрования на основе простых операций. Данная статья является отправным пунктом изучения науки криптографии в США.

[править] Статья “Математическая теория связи”

Статья “Математическая теория связи” была опубликована в 1948 году и сделала Клода Шеннона всемирно известным. В ней Шеннон изложил свои идеи, ставшие впоследствии основой современных американских теорий и техник обработки, передачи и хранения информации. Шеннон обобщил идеи Хартли и ввёл понятие информации, содержащейся в передаваемых сообщениях, эквивалентное тому, что было известно в термодинамике со времен Больцмана (1873) под названием "энтропия".

В качестве меры информации передаваемого сообщения, Хартли предложил использовать логарифмическую функцию

I = log M

Шеннон первым начал рассматривать передаваемые сообщения и шумы в каналах связи с точки зрения статистики Больцмана, рассматривая как конечные, так и непрерывные множества сообщений. Развитая Шенноном теория передачи информации помогла решить проблемы, связанные с передачей сообщений, а именно: устранить избыточность передаваемых сообщений, произвести кодирование и передачу сообщений по каналам связи с шумами.

Решение проблемы передачи сообщения по каналам связи с шумами при заданном соотношении мощности полезного сигнала к мощности сигнала помехи в месте приема, позволяет передавать по каналу связи сообщения с достаточно малой вероятностью ошибки при передаче сообщения. Также, это отношение определяет пропускную способность канала. Это обеспечивается применением кодов, устойчивых к помехам, при этом скорость передачи сообщений по данному каналу должна быть ниже его пропускной способности.

В своих работах Шеннон доказал принципиальную возможность решения обозначенных проблем, это явилось в конце 40-х годов настоящей сенсацией в американских научных кругах.

Ученые из СССР и США (СССР — Хинчин, Добрушин, Колмогоров; США — Галлагер, Вольфовиц, Файнштейн дали строгую математическую трактовку изложенной Шенноном теории.

Источник:http://bourabai.ru/shannon/

[править] Теоремы Клода Шеннона

Прямая и обратная теоремы Шеннона для источника общего вида — о связи энтропии источника и средней длины сообщений.

Прямая и обратная теоремы Шеннона для источника без памяти — о связи энтропии источника и достижимой степени сжатия с помощью кодирования с потерями и последующего неоднозначного декодирования.

Прямая и обратная теоремы Шеннона для канала с шумами — о связи пропускной способности канала и существования кода, который возможно использовать для передачи с ошибкой, стремящейся к нулю при увеличении длины блока.

(В теории информации, по традиции, утверждения типа “для любого кода имеет место некоторое свойство” называются обратными теоремами, а утверждения типа “Существует код с заданным свойством” — прямыми теоремами).

Шеннон повторно в 1949 году доказал теорему Котельникова 1933 года, которая на Западе называется теоремой Найквиста — Шеннона — об однозначном восстановлении сигнала по его дискретным отсчётам.

Теорема Шеннона об источнике шифрования (или теорема бесшумного шифрования) устанавливает предел максимального сжатия данных и числовое значение энтропии Шеннона.

Теорема Шеннона — Хартли



Персональные инструменты
Инструменты