Замечательные точки треугольника

Материал из Letopisi.Ru — «Время вернуться домой»
(Различия между версиями)
Перейти к: навигация, поиск
(Новая: Замечательные точки треугольника (8 класс: «Четыре замечательные точки треугольника») Высоты треу...)
 
м
 
(не показана 1 промежуточная версия 1 участника)
Строка 1: Строка 1:
Замечательные точки треугольника
 
  
(8 класс: «Четыре замечательные точки треугольника»)
 
  
 
  
Высоты треугольника.
+
{{Править название}}
  
 
  
  Прямые, содержащие высоты треугольника, всегда пересекаются в одной точке, называемой его ортоцентром. В остроугольном треугольнике ортоцентр лежит внутри треугольника, в прямоугольном – совпадает с вершиной прямого угла, а в тупоугольном – находится вне треугольника на пересечении продолжения высот.
 
                                                                               
 
  
  Если Н – ортоцентр треугольника АВС, то любая из четырёх точек А, В, С и Н является ортоцентром треугольника, образованного тремя другими точками.
 
  
                                                                                                                       
+
8 класс: «Четыре замечательные точки треугольника»
  
Медианы.
+
Высоты треугольника.
  
 
   
 
   
 +
Прямые, содержащие высоты треугольника, всегда пересекаются в одной точке, называемой его ортоцентром. В остроугольном треугольнике ортоцентр лежит внутри треугольника, в прямоугольном – совпадает с вершиной прямого угла, а в тупоугольном – находится вне треугольника на пересечении продолжения высот.
 +
                                                                               
 +
   
 +
[[Изображение:tr0.jpg]][[Изображение:tr1.jpg]]
  
  Можно доказать, что точка Р, расположенная внутри треугольника АВС, лежит на медиане, проведенной к стороне ВС тогда и только тогда, когда площади треугольников РАВ и РАС равны.
+
Если Н – ортоцентр треугольника АВС, то любая из четырёх точек А, В, С и Н является ортоцентром треугольника, образованного тремя другими точками.  
                                                                           
+
  Медианы треугольника пересекаются в одной точке – М, причем все три треугольника, МАВ, МАС, и МВС, имеют равные площади, или равновелики. Более того, в любом треугольнике точка М делит каждую медиану в одном и том же отношении 2 : 1, считая от вершины.  
+
  
+
                                                                                                                       
 +
Медианы.
  
                                             
+
Можно доказать, что точка Р, расположенная внутри треугольника АВС, лежит на медиане, проведенной к стороне ВС тогда и только тогда, когда площади треугольников РАВ и РАС равны.
 +
                                      [[Изображение:tr5.jpg]]                                     
  
+
Медианы треугольника пересекаются в одной точке – М, причем все три треугольника, МАВ, МАС, и МВС, имеют равные площади, или равновелики. Более того, в любом треугольнике точка М делит каждую медиану в одном и том же отношении 2 : 1, считая от вершины.
  
 +
[[Изображение:tr6.jpg]]
  
+
                                           
 
+
 
Интересное свойство точки пересечения медиан связано с физическим понятием центра масс. Оказывается, если поместить в вершины треугольника равные массы, то их центр попадет именно в эту точку.  
 
Интересное свойство точки пересечения медиан связано с физическим понятием центра масс. Оказывается, если поместить в вершины треугольника равные массы, то их центр попадет именно в эту точку.  
  
 
Центр равных масс иногда называют центроидом. Именно поэтому говорят, что точка пересечения медиан – центроид треугольника. В этой же точке располагается и центр масс однородной треугольной пластинки. Если подобную пластинку поставить на булавку так, чтобы остриё булавки попало точно в центроид, то пластинка будет находиться в равновесии.
 
Центр равных масс иногда называют центроидом. Именно поэтому говорят, что точка пересечения медиан – центроид треугольника. В этой же точке располагается и центр масс однородной треугольной пластинки. Если подобную пластинку поставить на булавку так, чтобы остриё булавки попало точно в центроид, то пластинка будет находиться в равновесии.
  
 
+
[[Изображение:Etr10.jpg]]
 
                                                          
 
                                                          
  
  Прямая Эйлера. Леонард Эйлер сделал целый ряд замечательных открытий в геометрии треугольника. Например, он доказал, что центроид М любого треугольника лежит на отрезке между центром О его описанной окружности и ортоцентром Н и делит этот отрезок в отношении ОМ : МН = 1 : 2. Прямая ОН называется прямой Эйлера данного треугольника.
+
Прямая Эйлера. Леонард Эйлер сделал целый ряд замечательных открытий в геометрии треугольника. Например, он доказал, что центроид М любого треугольника лежит на отрезке между центром О его описанной окружности и ортоцентром Н и делит этот отрезок в отношении ОМ : МН = 1 : 2. Прямая ОН называется прямой Эйлера данного треугольника.
 
+
                                                         
+
 
+
 
+
_____________________________________________________________________________________________
+
 
+
    О других замечательных точках треугольника вы можете прочитать в Энциклопедии для детей  «Математика» издательства «Аванта +»
+
 
+
  
 +
==Ссылки ==
 +
*Энциклопедии для детей  «Математика» издательства «Аванта +»
  
[[Изображение:tr0.jpg]][[Изображение:tr1.jpg]][[Изображение:tr5.jpg]][[Изображение:tr6.jpg]][[Изображение:Etr10.jpg]]
+
[[Категория:Методика]]

Текущая версия на 20:26, 30 июня 2008


Статью необходимо переименовать- см. Имя статьи



8 класс: «Четыре замечательные точки треугольника»

Высоты треугольника.


Прямые, содержащие высоты треугольника, всегда пересекаются в одной точке, называемой его ортоцентром. В остроугольном треугольнике ортоцентр лежит внутри треугольника, в прямоугольном – совпадает с вершиной прямого угла, а в тупоугольном – находится вне треугольника на пересечении продолжения высот.


Tr0.jpgФайл:Tr1.jpg

Если Н – ортоцентр треугольника АВС, то любая из четырёх точек А, В, С и Н является ортоцентром треугольника, образованного тремя другими точками.


Медианы.

Можно доказать, что точка Р, расположенная внутри треугольника АВС, лежит на медиане, проведенной к стороне ВС тогда и только тогда, когда площади треугольников РАВ и РАС равны.

                                     Файл:Tr5.jpg                                      

Медианы треугольника пересекаются в одной точке – М, причем все три треугольника, МАВ, МАС, и МВС, имеют равные площади, или равновелики. Более того, в любом треугольнике точка М делит каждую медиану в одном и том же отношении 2 : 1, считая от вершины.

Файл:Tr6.jpg


Интересное свойство точки пересечения медиан связано с физическим понятием центра масс. Оказывается, если поместить в вершины треугольника равные массы, то их центр попадет именно в эту точку.

Центр равных масс иногда называют центроидом. Именно поэтому говорят, что точка пересечения медиан – центроид треугольника. В этой же точке располагается и центр масс однородной треугольной пластинки. Если подобную пластинку поставить на булавку так, чтобы остриё булавки попало точно в центроид, то пластинка будет находиться в равновесии.

Файл:Etr10.jpg


Прямая Эйлера. Леонард Эйлер сделал целый ряд замечательных открытий в геометрии треугольника. Например, он доказал, что центроид М любого треугольника лежит на отрезке между центром О его описанной окружности и ортоцентром Н и делит этот отрезок в отношении ОМ : МН = 1 : 2. Прямая ОН называется прямой Эйлера данного треугольника.

[править] Ссылки

  • Энциклопедии для детей «Математика» издательства «Аванта +»
Персональные инструменты
Инструменты