8-ричная и 16-ричная системы счисления
Материал из Letopisi.Ru — «Время вернуться домой»
С точки зрения изучения принципов представления и обработки информации в компьютере, обсуждаемые в этом пункте системы представляют большой интерес. Хотя компьютер «знает» только двоичную систему счисления (Двоичная система счисления,Системы счисления), часто с целью уменьшения количества записываемых на бумаге или вводимых с клавиатуры компьютера знаков бывает удобнее пользоваться восьмеричными или шестнадцатиричными числами, тем более что, как будет показано далее, процедура взаимного перевода чисел из каждой из этих систем в двоичную очень проста - гораздо проще переводов между любой из этих трех систем и десятичной. Перевод чисел из десятичной системы счисления в восьмеричную производится (по аналогии с двоичной системой счисления) с помощью делений и умножений на 8. Перевод чисел из десятичной системы счисления в шестнадцатеричную производится аналогично. С практической точки зрения представляет интерес процедура взаимного преобразования двоичных, восьмеричных и шестнадцатиричных чисел. Для этого воспользуемся табл. 1.6 чисел от 0 до 15 (в десятичной системе счисления), представленных в других системах счисления. Для перевода целого двоичного числа в восьмеричное необходимо разбить его справа налево на группы по 3 цифры (самая левая группа может содержать менее трех двоичных цифр), а затем каждой группе поставить в соответствие ее восьмеричный эквивалент. Заметим, что группу из трех двоичных цифр часто называют «двоичной триадой». Перевод целого двоичного числа в шестнадцатиричное производится путем разбиения данного числа на группы по 4 цифры - «двоичные тетрады». Для перевода дробных частей двоичных чисел в восьмеричную или шестнадцатиричную системы аналогичное разбиение на триады или тетрады производится от точки вправо (с дополнением недостающих последних цифр нулями). Перевод восьмеричных (шестнадцатиричных) чисел в двоичные производится обратным путем - сопоставлением каждому знаку числа соответствующей тройки (четверки) двоичных цифр. Арифметические действия с числами в восьмеричной и шестнадцатиричной системах счисления выполняются по аналогии с двоичной и десятичной системами. Для этого необходимо воспользоваться соответствующими таблицами. Для примера табл. 1.7 иллюстрирует сложение и умножение восьмеричных чисел. Рассмотрим еще один возможный способ перевода чисел из одной позиционной системы счисления в другую - метод вычитания степеней. В этом случае из числа последовательно вычитается максимально допустимая степень требуемого основания, умноженная на максимально возможный коэффициент, меньший основания; этот коэффициент и является значащей цифрой числа в новой системе.
Непозиционные системы счисления