Надмембранные образования
Шаблон:Campus У многих клеток помимо плазматической мембраны есть особые надмембранные структуры – клеточные оболочки. Клеточные оболочки встречаются у бактерий и растительных клеток. Они не пассивные образования, а являются активными участниками транспортных процессов клетки, принимают участие в защите клеток от факторов внешней среды.
Клеточные стенки бактерий
Все бактерии различаются по способности окрашиваться специальным красителем в фиолетовый цвет. Это группы грамположительных и грамотрицательных бактерий. В настоящее время выяснилось, что эти свойства связаны с особой структурой их надмембранных образований – клеточных стенок.
У грамположительных бактерий есть однослойная, толщиной 70-80 нм. клеточная стенка, образованная сложным белково-углеводным комплексом молекул (пептидогликаны). Это система длинных полисахаридных (углеводных) молекул, связанных между собой короткими белковыми мостиками. Они располагаются в несколько слоев параллельно поверхности бактериальной клетки. Все эти слои пронизаны молекулами сложных углеводов – тейхоевых кислот. У грамотрицательных бактерий клеточная стенка более сложная и имеет двойную структуру. Над первичной, плазматической мембраной, строится еще одна мембрана и скрепленная с ней пептидгликанами. После изучения клеточных стенок бактерий стали ясны механизмы действия антибиотиков на бактерии, а также механизмы устойчивости бактерий к противобактериальным факторам организма-хозяина (бактерицидные соединения слюны, кишечного тракта, плазмы крови).
Так, широко известный антибиотик пенициллин (продукт деятельности плесневого гриба Penicillum notatum) нарушает процесс синтеза клеточной стенки, и бактерия гибнет. Грамотрицательные бактерии оказались более устойчивыми к действию бактерицидных веществ именно благодаря наличию второй наружной мембраны.
Клеточные стенки растительных клеток
Основным компонентом клеточной стенки растительных клеток является сложный углевод – целлюлоза. Длинные молекулы целлюлозы, соединяясь друг с другом, образуют микрофибриллы толщиной 10-30 нм. Они, в свою очередь образуют витые как канат нити большего диаметра (0,5 мкм) и длинной до 5 мкм – макрофибриллы. Прочность их очень велика и сравнима с прочностью стальной проволоки. Слои макрофибрилл располагаются под углом друг к другу, создавая мощный многослойный каркас.
Кроме целлюлозы, в состав клеточной стенки входят другие полисахариды (гемицеллюлоза, пектин, лигнин). Они придают стенке дополнительную жесткость. Кроме полисахаридов, в состав клеточных стенок растений входят жироподобные вещества, предотвращающие излишнее испарение воды из клетки. Клеточные стенки соседних клеток плотно прилегают друг к другу, но между ними остается узкий промежуток – срединная пластинка, состоящая из пектинов, и выполняющая роль межклеточного вещества, по которому транспортируются вода, ионы, различные молекулы. После того, как клетка прекращает рост, изнутри начинает откладываться вторичная оболочка, имеющая большую прочность, чем первичная. Обычно она трехслойная. В клетках, имеющих вторичную оболочку, цитоплазма гибнет и они превращаются в опорные элементы или трубочки, проводящие воду.
Роль цитоплазматической мембраны в формировании клеточной стенки определяющая. Синтез целлюлозных фибрилл происходит с помощью ферментных комплексов, встроенных в мембрану и имеющих форму розеток. Характер распределения этих розеток по мембране при образовании первичной или вторичной оболочек (он разный) также определяет плазматическая мембрана и субмембранный комплекс.
Надмембранный комплекс животных клеток
Гликокаликс. Эукариотические клетки животных не образуют клеточных стенок, но на поверхности их плазматической мембраны есть сложный мембранный комплекс – гликокаликс, который выполняет в клетке важные функции. Он образован системой периферических белков мембраны, углеводными цепями мембранных гликопротеинов и гликолипидов, а также надмембранными участками интегральных белков, погруженных в мембрану.
Гликокаликс выполняет ряд важных функций: он участвует в рецепции молекул, содержит молекулы межклеточной адгезии, отрицательно заряженные молекулы гликокаликса создают электрический заряд на поверхности клеток. Определенный набор молекул на поверхности клеток является своеобразным маркером клеток, определяя их индивидуальность и узнаваемость сигнальными молекулами организма. Это свойство имеет очень большое значение в работе таких систем как: нервная, эндокринная, иммунная. В ряде специализированных клеток (например: во всасывающих клетках кишечного эпителия) гликокаликс несет основную функциональную нагрузку в процессах мембранного пищеварения. К сложным надмембранным образованиям животных клеток относятся разного вида кутикулы, характерные для многих групп беспозвоночных животных (членистоногих, червей, моллюсков, асцидий). Структура кутикул разного вида будет рассмотрена в соответствующих главах, посвященных покровным эпителиям позвоночных и беспозвоночных животных.
Таким образом мы видим, что плазматическая мембрана является важнейшим компонентом про- и эукариотических клеток. Она во многом определяет жизнеспособность клетки и обеспечивает условия для успешного выполнения клеткой ее функций.